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ABSTRACT 

 

Robotic surgical systems such as the da Vinci Surgical System support minimally 

invasive surgeries which decrease risk to patients and hospital stay time. However, the 

learning curve on the da Vinci system is quite steep, and existing training curriculums on 

surgical simulators primarily offer students the opportunity to practice basic tasks rather 

than experience a full, realistic operation. This paper presents an augmented-reality video 

training platform for the da Vinci which will allow medical students to rehearse any 

variety of real surgery, with any possible complication. While a user operates the da 

Vinci, the video of tool movements is extracted from the surgical system and overlaid on 

the “teacher” video of an expert so that the user can mirror the expert’s motion. This 

combined video is streamed back into the stereoscopic eyepiece of the da Vinci. Tools 

are identified in the image via color segmentation and kernelized correlation filter 

tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. If any 

of the user’s tools venture too far away from the experts’, the system will alert the user 

and pause to let them catch up. Statistical feedback on path length and distance between 

user and expert tools is given to the user at the end of the program.  
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1. INTRODUCTION AND BACKGROUND 

1.1 Introduction to Robotic Surgery 

 

The developing field of robotic surgery facilitates surgeons' completion of 

complicated and potentially life-threatening procedures. It combines the mobility of the 

human hand with the small incisions seen in laparoscopy to ensure a smooth, minimally 

invasive operation for both physician and patient. A doctor using a robotic surgical 

system, such as the prominent da Vinci Surgical System (Intuitive, Sunnyvale, CA), sits 

at a master console, which is linked to a slave console. This slave console has two to four 

arms with interchangeable tools and one endoscope with stereoscopic camera which are 

inserted into small incisions in the body. The device features a three-dimensional 

eyepiece and highly mobile (7-DOF) grippers on the master console [1]. With these, a 

surgeon can complete a complex operation with greater agility and vision than a 

laparoscopic procedure.  

Many concrete benefits have been observed in procedures utilizing robotic surgical 

systems. Minimally invasive procedures such as laparoscopy or robotic surgery feature 

lower pain and faster recovery time than open surgery. Furthermore, robotic surgery 

offers benefits over even laparoscopy, such as instruments with wrist joints and the 

filtering out of any low-amplitude tremors in the surgeon’s hand motion [2]. Robotic 

surgical systems such as the da Vinci have been successfully used in operations as 

diverse as cholecystectomies, prostatectomies, kidney transplants, and endoscopic 

coronary artery grafting [1]. Researchers have observed that patients who undergo robotic 

surgeries often have shorter hospitalization times and fewer post-surgical complications 

in abdominal [3] and gynecological surgery [4], and lower blood loss in tumor removal 

[5], [6], as compared to laparoscopic or open surgery.    

Figure 1a: da Vinci S  urgeon Console; Figure 1b: da Vinci Patient Console 

However, robotic surgery systems have several disadvantages. First, they currently 

lack haptic feedback, meaning that surgeons cannot feel how hard they are pressing on 

tissue. Surgeons generally prefer to have this vital feedback, which makes them more 

aware of their anatomical surroundings and prevents them from accidentally breaking 

vital tissue [7]. Second, they often have a very steep learning curve. Studies have shown 

that gaining proficiency in the use of the da Vinci machine can take a significant amount 
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of time; however, surgical residents often have limited access to these highly coveted 

machines. 

 

1.2 Learning Curve for Robotic Surgery 

 

The learning curve for robotic surgery is often quite steep. Although the learning 

curve required to improve at fundamental skills such as suturing or knot-tying can take as 

short as ninety minutes [8], six hours [9], or within five trials [10], more difficult skills 

take more time. Long-term surgical studies found that the learning curve can take many 

real-life cases to overcome: the learning curve for surgeons can take about 15 cases for 

colorectal [11], and 50 cases for gynecological procedures [12]. However, decreases in 

operating time and/or positive surgical margin can be found after 33 [13], 50 [14], or over 

100 [15] cases of robotic-assisted radical prostatectomies.   

 

1.3 Existing Simulators 

 

Clearly, the performance of many actual robotic surgeries is required for 

improvement. However, most learning procedures for robotic surgery do not include 

simulation of full surgeries.  

Residents often train by either using a da Vinci machine itself or by using a simulator. 

The da Vinci Skills Simulator, or dVSS [16], attaches to an actual da Vinci machine, and 

can drill students in a library of fundamental skills such as basic manipulation, camera 

targeting, and suturing. Other simulators require the purchase of a separate physical 

simulator, such as the  Mimic dV-Trainer, or MdVT [17], and the Robotic Surgery 

Simulator, or RoSS [18]. All of these simulators drill students in a library of fundamental 

skills such as camera targeting, suturing, energy use, and tissue dissection.  

Figure 2a: Actual peg board task; Figure 2b: Simulated ring transfer task [17] 

Many studies have confirmed face and content validity for the dVSS, MdVT, and 

RoSS, as well as construct validity on varying tasks with varying metrics [19]. Several 

skills transfer studies also determined that students practicing on the MdVT, RoSS, and 

dVSS with standard tasks could improve their performance on inanimate or live models 

[19].  

Recently, developments have been made in the creation of more realistic simulators. 

The ROSS was the first system to do so, creating a Hands-On Surgical Training, or 

HoST, module in addition to its regular training modules [20]. It shows users real video 
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from an operation while guiding their hands through the movements taken by the original 

surgeon, providing additional information and anatomical annotations on top of the 

video.  

However, very recently, an increasing number of companies have explored this idea. 

The Robotix Mentor uses a separate platform to simulate a variety of tasks such as 

prostatectomy and hysterectomy [21]. It divides the tasks into sub-tasks to aid learning 

and allows the user to pre-program organ placement. In addition, the MdVT recently 

piloted the Maestro AR [17], which uses the dV-Trainer to control the image of 

computer-generated tools projected onto three real surgical videos: partial nephrectomy, 

hysterectomy, and inguinal hernia repair. However, face and content validity have not yet 

been proven for any of these new simulation systems; in addition, they do not run on the 

da Vinci machine itself. This makes the experience less realistic for the trainee and less 

accessible to hospitals who perhaps possess a da Vinci machine but have not purchased 

an expensive simulator.   

A newly-launched addition to the da Vinci Xi Skills Simulator builds off the Robotix 

Mentor simulation platform, but runs on the da Vinci machine itself. It is able to simulate 

an entire hysterectomy, as well as specific procedural tasks within it, providing in-

operation guidance and the ability to program certain organ placements.  [21]. However, 

it uses three-dimensional simulation instead of using augmented real video like the ROSS 

HoST or MdVT Maestro.  

So far, the only one of these systems with proven face and content validity is the 

ROSS HoST;  its skills transfer ability was proven when students using the ROSS HoST 

to practice urethrovesical anastomosis performed better than those who simply viewed 

videos of the procedure [22]. However, the other systems' validity in simulating a whole 

procedure has not been tested. It has been noted that virtual reality training in general has 

not yet been conclusively proven to transfer skills to robotic surgery [19], [23].  

 

1.4 Aims of Proposed System 

 

The proposed software will allow a user to operate on an actual da Vinci Surgical 

System console. It is based upon combining previously filmed videos of expert surgeons 

performing specific surgeries (“teacher video”) with the stereoscopic live feed from the 

da Vinci endoscope of a learner (“student video”). The student, sitting at the da Vinci 

console and operating the master grippers in the conventional manner, will view an 

overlay of their instruments onto the background of the real-time teacher video. The 

student will be able to “follow along” with the teacher video, actively trying to emulate 

the efficiency and economy of motion of an expert surgeon by trying to keep their tools 

as close as possible to the surgeon's in the teacher video. The teacher video feed will 

pause if the student's tools are too far from the teacher's tools, as determined by a three-

dimensional model gained from stereoscopic video, and allow the student to catch up. In 

the end, automatic scoring of such features like time to complete surgery, number of 

pauses, distance from teacher's to student's tool, and student's path length will be 

presented to the student for immediate feedback.  

This proposed system will improve upon previous efforts. Unlike the RoSS HoST, 

MdVT Maestro, or Robotix Mentor, it will run on the da Vinci machine itself, making it 

more realistic and accessible. It will also be able to run on any model of da Vinci 
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machine and is not just tailored for a specific generation. As long as calibration is 

performed on a da Vinci system (a process taking under an hour), that system can be used 

with the application. Furthermore, the Robotix Mentor or the new addition to the da Vinci 

Xi Skills Simulator use orderly-looking but not overly convincing simulated organ 

environment, whereas this application will run on real video.  

Most importantly, unlike all aforementioned systems, which are built upon specific 

procedures and slowly release new modules for individual types of operation, the 

proposed system will be able to step the viewer through any type of expert surgery, as 

long as a previous video of it has been taken. Instead of waiting on the release of new 

pre-programmed simulations of the type of surgery in which they specialize, surgeons 

can use their own old operation videos to train students. Thus, the student will be able to 

learn directly the motion patterns of an expert in this realistic setting, instead of following 

a series of instructions as in the da Vinci Xi Skills Simulator. 

Furthermore, this will allow students to practice what to do in the event of unforeseen 

complications. Although the newest da Vinci Xi Skills Simulator allows the placement of 

internal organs to be adjusted beforehand in the simulation, creating some variation, none 

of the simulators’ modules allow for more widely varied problems which a surgeon might 

face, such as large amounts of adipose tissue obscuring a view, organs of unusual size 

and shape as well as position, or internal bleeding. In the proposed system, any 

complication or anatomical variation which has been previously observed and recorded 

on video can be presented to the student. 

Overall, this system will provide a way for medical students to train on the da Vinci 

machine by superimposing their tool motion on top of that of an expert surgeon. It offers 

a realistic setting, a multitude of possibilities for the type and course of the operation, and 

the opportunity to learn from an expert surgeon.  

  

2. APPLICATION DESIGN 

2.1 Software Specifications 
 

The program was developed in C++, with the use of the OpenCV libraries [24]. The 

application’s graphical user interface was designed with QT Creator. Individual user data 

was saved and retrieved using an SQL database. Preprocessing of videos was done in 

MATLAB.   

 

2.2 Hardware Specifications 

Figure 3: Hardware Diagram 
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The program was run on a Linux machine and connected to a first generation da 

Vinci Surgical System. Incoming student video was obtained from left and right camera 

control units (CCUs) on the da Vinci Surgical System vision cart. S-video output from 

the vision cart was converted to USB format with two Sabrent S-Video to USB capture 

cables, then connected through USB 2.0 ports to the Linux machine. The outgoing left 

and right video feed created by the Linux machine was sent out through two HDMI 

cables, then through HDMI to SDI converters, and fed into the left and right video inputs 

in HD-SDI format in the back of the surgeon console.  

The da Vinci Surgical System serves as the student console. On the left tool of the da 

Vinci machine, a green tape marker is placed; on the right tool of the da Vinci machine, a 

blue tape marker is placed. These colors were chosen due to their relative infrequency in 

natural tissue, and they are used to pick out the original tools.  

Figure 4a: Camera Control Units; Figure 4b: SDI input into da Vinci 

Figure 5a: da Vinci stereoscopic eyepiece; Figure 5b: USB to S-Video converter 

3. DESIGN AND RESULTS 

 
Figure 6: Program Flowchart 
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3.1 Preprocessing  
This algorithm models the da Vinci machine arm shaft as a spherical robot, with two 

degrees of freedom in rotation and one degree of freedom in extension. The joint of the 

arm itself has many more degrees of freedom; however, the shaft of the arm has a fixed 

insertion point (an incision into the body or a hole into a hollow shell modeling an 

inflated torso). The surgeon can rotate that arm around that insertion point with two 

degrees of freedom, or the surgeon can pull the arm in or out of the incision.  

Figure 7: Spherical Robot Model 

 Here, it is assumed that d1, d2, and d3 have distance 0; all joints are located at the 

point of the incision – the tool’s origin.   

 In order to accurately predict tool motion based on this spherical model, the system 

needs to perform some pre-processing to figure out the location of the spherical origin 

with respect to the camera frame, OC. Since the surgeon on the da Vinci machine is able 

to move the camera, a matrix of locations of spherical origins will be calculated: [OC
1,  

OC
2, …, OC

n] for n camera frames.  

 For the purposes of this model, we will assume that the teacher’s and student’s ports 

are placed in the same location, so their tools will have the same origins – standard 

locations for port placement can be used here. Thus, for any i, OC
i for the teacher video 

is assumed equivalent to OC
i for the student video.  

 Initial preprocessing is done with C++ and OpenCV. In it, color segmentation is 

used to identify tools, which are typically gray on a red- or pink-toned background. This 

color segmentation creates a binary image: pixels within the specified tool color range 

are labeled 1, while those outside the color range are 0. Some modifications such as 

dilation and closing of the binary image are performed to make the outlines clearer, then 

the findContours() function in OpenCV is used to identify the largest contours in the 

picture, those containing the tools. For each tool, a point on the left side of the tool’s 

bounding box at the center of its height in that x-position and a point at the right side of 

the tool’s bounding box at the center of its height in that y-position are found. Next, the 

procedure to convert a two-dimensional point in an image to a three-dimensional point, 

described later, is run on the left and right points for each tool. These three-dimensional 

points are printed to a csv file.  

 The movement of the camera frame is detected by the appearance of a bright blue 

icon on screen which the da Vinci Surgical System produces when the surgeon presses 

the pedal to move the camera. This icon is located by color segmenting; when it is 

found, the calculation of the origin point resets to compute an origin point with respect 

to the new camera frame.  
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MATLAB is then used for the next stage of the preprocessing. It reads in the csv file 

which contains the left and right points of the tools in each frame. For each individual 

tool, the slopes of the tools can be calculated from these left and right points, so the line 

of the tool is fully defined for each frame. Using these lines, the system calculates the 

point closest to the intersection of all of them (noise in the tool location makes it 

possible that they will not all intersect in the same place). This is done by implementing 

an algorithm developed by Han and Bancroft to find the point closest to the intersection 

of lines in n-dimensional space using singular value decomposition [25].   

After all the origin points with respect to different camera frames are calculated, the 

preprocessing is complete and the video itself can be streamed. 

 

3.2 Camera Calibration 
 

  Calibration is performed on the da Vinci Surgical System stereoscopic endoscope 

camera, using the built in StereoCalibrate program included in the OpenCV library [24]. 

Calibration was performed upon 31 pairs of stereo images by taking pictures of 

chessboards from the left and right camera frames of the endoscope at varying angles and 

distances.  

Figure 8a: Left image of chessboard; Figure 8b: Right image of chessboard 

 The findChessboardCorners() function was used to locate corners of this function, 

then stereo calibration was performed using these corners as corresponding landmarks in 

the image. The function stereoCalibrate() calculated the camera matrix for each 

individual camera: [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

], where fx and fy are the x- and y-  focal lengths for the 

camera, and cx and cy are the principal points at the image center, based on the locations 

of chessboard corners in corresponding images. The function stereoCalibrate() also 

calculated the distortion coefficients for each individual camera: [k1 k2 p1 p2 k3]. It also 

output R and T, the rotation and translation matrices between the two cameras.  

Figure 9: Chessboard corners located in image 
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 Once the images were calibrated, they could be rectified. stereoRectify() was called 

to rectify the chessboard images, ensuring that corresponding points would be on the 

same horizontal line. This rectification produced chessboard images such as Figure 3 

below: corresponding points in the chessboards are located on the same green lines; the 

images themselves are warped somewhat in order to achieve this effect. This function 

also output R1 and R2, the rectification transform rotation matrices for both cameras, as 

well as outputting P1 and P2, the projection matrices for the new coordinate systems for 

both cameras. It also output Q, the disparity-to-depth mapping matrix. 

initUndistortRectifyMatrix() and remap() were used to remap and draw images with 

correct rectification.  

Figure 10: Rectified chessboard images 

 This calibration overall achieved a root mean square error of 0.842771, and an 

average epipolar error of 0.544317, meaning that it was quite accurate. The camera 

matrices, distortion coefficients, R, T, R1, R2, P1, P2, and Q were all written to a file, so 

that they could be used for later video rectification.  

 

3.3 Runtime Processing 
 Before the video starts, the student is prompted to align their tools with the teachers’ 

tools in the first frame of the video. Video from left and right teacher frames, as well as 

left and right student frames, is streamed to four OpenCV Mat images: studentLeft, 

studentRight, teacherLeft, and teacherRight.  

 The images studentLeft and teacherLeft are added together into the image sumLeft, 

as well as studentRight and teacherRight into sumRight. The image sumLeft is displayed 

in the left eyepiece of the da Vinci surgeon console, and the image sumRight is displayed 

in the right eyepiece of the da Vinci surgeon console. In that way, the student is provided 

with augmented reality so that they can see clearly both their own tools and those of the 

surgeon they are mirroring. This provides a realistic environment, unlike other computer-

generated environments which may appear overly smooth or neat.   

 Since they are taken from the da Vinci endoscope, these images are remapped. The 

function initUndistortRectifyMatrix() provided by OpenCV is used to calculate the 

remapping matrices for the left image and the right image needed to align corresponding 

points in left and right images to make sure that they are on the same horizontal line, as 

the chessboard images before were. It calculates them from the camera matrix, distortion 

coefficients, and rectification transform rotation matrix of their corresponding camera. 

Then, it remaps the images of da Vinci tools using these remapping matrices and the 

function remap(). This remapping causes corresponding points to have the same 
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horizontal locations in their image, which will come in useful later when the disparity 

between corresponding points is calculated in order to deduce depth.   

 In the first frame, the ends of the tools are located by color segmentation, as the end 

and base of the student’s left tool are blue, and the end and base of the teacher’s left tool 

are green (they have been marked in this way). The teachers’ tools were not marked in 

this way. It would be possible to film video with teachers using these markers on their 

tools in a real surgery, as the markers are made of colored tape and would not interfere 

with the surgery in any way. However, the aim of this platform is to work with any pre-

existing surgical video, not only videos which have been specially constructed for the 

occasion. Thus, we must assume that the student has correctly aligned their tools with the 

teachers’ tools in this first frame. Thus, the bounding boxes around the end of the 

students’ tools will also mark bounding boxes around the end of the teachers’ tools. 

These provide information on the ends and bases of the tool, so their endpoints and slopes 

can later be calculated.  

 On the first frame, a Kernelized Correlation Filter, provided by OpenCV as a 

KCFTracker, will be initialized on these starting bounding boxes in order to track these 

bounding boxes in the teachers’ frame, keeping track of the ends of the teachers’ tools 

throughout the application. Thus, after being initialized by a color segmentation in the 

student video, KCF Tracker was used across frames to keep track of the unmarked tools 

of the teacher video. KCF Tracker stores eight points (calculated from the centers of its 

bounding boxes of interest): in each of the student and teacher’s left and right videos, it 

stores the points of the left tool and the right tool.  

  Next, the StereoBM, or stereo block matching, function is used to find the disparity 

between corresponding points in the rectified images. Objects whose corresponding 

points in separate images are farther apart are typically closer to the cameras, while 

objects whose corresponding points in separate images are close together are farther from 

the camera. These can be expressed in the simplified equation:  

Figure 11: Epipolar geometry 

 The disparity between corresponding points is calculated in pixels; then, the 

reprojectImageTo3D() function uses the Q reprojection matrix calculated in the 

calibration phase in order to turn a disparity map showing the distance between points 

into a depth map, expressing the X, Y, and Z locations of each pixel in the image with 

respect to one camera frame.  

 Next, the depth map is used to look up the X, Y, and Z locations of the endpoints of 

the student’s and teacher’s left and right tools. The teachers’ X, Y, and Z locations of the 

tools’ origins with respect to the camera frame were calculated during preprocessing. 

Specific tool origins with respect to the camera frame are known as a potentially different 

value for each frame, since the teacher can shift the camera during operation. Here, we 
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will assume that the students and teachers have the same tool origins with respect to the 

camera frame. That is, the students are using the same basic port locations (common, 

established port locations are known and set up beforehand) and operating their camera in 

the correct way. Now, these three-dimensional positions students’ and teachers’ tool 

endpoint with respect to the camera frame are known; in addition, the X, Y, and Z 

locations of the students’ and teachers’ origins with respect to the camera frame are also 

known. Thus, the students’ and teachers’ tool endpoints and basepoints can be converted 

from the camera frame (xc, yc, zc) to the origin frame (xo, yo, zo).  

 Once the tool endpoints and basepoints can be expressed in three-dimensional space 

with respect to the origin frame, they can be converted into spherical coordinates as 

required for their spherical model. A simple conversion is performed from (xo, yo, zo) to 

(θ1, θ2, d3).  

θ1 = arctan⁡(
y0

x0
) 

θ2 = arctan (
x0

√𝑥02 +⁡𝑦02
) + ⁡𝜋/2 

𝑑3 = ⁡√𝑥02 +⁡𝑦02 +⁡𝑧02 

 Then, a Kalman filter initialized in the first frame is run upon this set of spherical 

coordinates.  Because the da Vinci arm is being modeled as a spherical robot, its motion 

is limited by certain constraints. We cannot necessarily assume that dx0/dt, dy0/dt, or 

dz0/dt are constant. However, we can assume that the rates of change of θ1, θ2, and d3 

are constant, and we can filter out random noise from these measurements with a Kalman 

filter. A Kalman filter is thus initialized in three dimensions based on the spherical 

coordinates; it takes in the measured θ1, θ2, and d3 coordinates and outputs the 

theoretical, smoothed θ1, θ2, and d3 coordinates. Then, these coordinates are converted 

back into a Cartesian reference frame centered at the tool origins: 

x1 = d3 ∗ cos(θ2) ∗ cos⁡(⁡θ1) 
y1 = d3 ∗ cos(θ2) ∗ sin⁡(⁡θ1) 

z1 = d3 ∗ sin⁡(θ2) 
 This new point, (x1, y1, z1), is based on the smoothed Kalman filter of the spherical 

model. These points become the new endpoint and basepoint locations for the tool.   

 From the endpoint and basepoint locations, the slope of the tool can be calculated: 

〈𝑥, 𝑦, 𝑧〉 = (𝑥𝑒𝑛𝑑 −⁡𝑥𝑏𝑎𝑠𝑒 , 𝑦𝑒𝑛𝑑 −⁡𝑦𝑏𝑎𝑠𝑒 , 𝑧𝑒𝑛𝑑 −⁡𝑧𝑏𝑎𝑠𝑒).⁡ Furthermore, the endpoint and 

basepoint’s previously calculated spherical coordinates can be used to ascertain the 

accuracy of the model: if correct, they should have the same θ1 and θ2 coordinates and 

only differ by a constant amount in d3 each time.  

 In addition, the Cartesian coordinates of the last endpoint can be subtracted from the 

Cartesian coordinates of the current endpoint and added to a growing sum in order to 

approximate the path length traveled by each tool. On average, more experienced 

surgeons tend to have lower path lengths because they make clearer and more decisive 

movements, while less experienced surgeons are more subject to dithering, repetitive 

motion, and less economy of motion.  

Path Length = ∑ √(𝑥𝑖 −⁡𝑥𝑖−1)2 + (𝑦𝑖 −⁡𝑦𝑖−1)2 + (⁡𝑧𝑖 −⁡𝑧𝑖−1)2
𝑛
𝑖=1  

 The distance between the student’s endpoint and the teacher’s endpoint, as well as 

the distance between the student’s slope and the teacher’s slope, can now be calculated 
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for each tool in three dimensions.  If the distance or the difference in slope is above a 

certain threshold, the program will pause on its current video frame before continuing in 

the while loop which continuously captures teacher and student video frames. The 

teacher’s video will stay on its current frame, while the student video can move. The 

student will be able to observe their own motion, while the teacher’s frame will remain 

still. While the student’s endpoints or slopes are too disparate from the teacher’s, the 

teacher’s frame will remain still, giving the student a chance to catch up so the teacher 

video can start again.   

 The start and stop times of this pausing are recorded with the QTTimeAndDate 

module; in addition, an incremental count is kept of the number of pauses, so that these 

can be recorded for user statistics. The difference between student and teacher endpoint 

positions, path length for each student and teacher tool, and difference between student 

and teacher slopes are also recorded for user statistics.  

 At the end of this process, the while loop begins over again, and new video frames 

from student and teacher left and right videos are read into the algorithm.  

 

3.4 Workflow of Application 
 

After opening the application, users are directed to the Login screen, in which they 

can sign up with a new username and password or log in with a pre-existing one. If they 

choose to sign up, their username and password will create a new database entry.  

Once they log in, they are sent to the Home screen, which gives them three options: 

Select Videos, View Statistics, or Start. They must first choose Select Videos in order to 

choose the video for which they want to either view statistics or run the video. This 

brings up two windows to the file system for the user to choose left and right teacher 

videos, which should already be downloaded to the file system. Left and right video 

names should be formatted as “filename_Left.mpeg” and “filename_Right_Audio.mpeg,” 

in order to ensure that the videos correspond to one another. If the filenames do not 

follow this format, an error screen will prompt the user to choose correct videos. 

Figure 12a: Login screen; Figure 12b: Home screen; Figure 12c: Align screen 

If viewers select Start on the Home screen, they will be directed to the Align screen. 

This screen features two graphics views – one for the left camera and one for the right 

camera. Each view displays a live feed of the student’s video for its corresponding 

camera, superimposed onto the first frame of the teacher’s video for that camera. The 

screen prompts students to align their tools with the tools of the camera, which they can 
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visually ascertain by looking at the two graphics views. Once they are satisfied with the 

alignment, they can press the Start button on the Align screen.  

This will cause two new screens to appear – one screen represents the left video feed 

and the other represents the right video feed. Each screen will appear in the 

corresponding da Vinci eyepiece. At this point, the algorithm described in the previous 

section will run in order to process the video. From the students’ perspective, their video 

will appear in real time in each eyepiece, superimposed on top of the teachers’ video in 

real time. As long as they are performing well by keeping their da Vinci arms in close 

proximity to the teachers’ arms, the video will proceed in real time. However, if they 

move their arms too far away from the teachers’ arms in the video, the teachers’ video 

feed will pause, and a message will appear on screen instructing them to correct their 

tools’ position or alignment. As soon as they successfully do so, the students’ video feed 

will resume.  

Figure 13: Left and Right Augmented Reality screens 

Once the student wishes to stop, they (or a helper) can press Stop on the Align screen, 

which remains open. They will then be directed back to the Home screen. At this point, 

they can choose to press Start again to perform another surgery, choose View Statistics to 

see their performance on the surgery they have just completed, or choose Select Videos 

to play or see statistics on another video.  

Figure 14: Statistics screen 

If they choose View Statistics, they can see statistics on the video which they have 

chosen. (Note: If no video has been selected yet, View Statistics will prompt the user to 

choose a video – a user cannot simply open the application and immediately view their 

statistics without choosing a video.)  A numerical display of all statistics from their most 

recent surgery is shown at the bottom of the screen, and line graphs illustrative of 

progress over time can be seen for specific statistics. A series of radio buttons allows the 

user to select the statistic for which they wish to see a line graph: time to completion, 

percentage of optimal time taken, number of pauses, average pause length, average left 
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tip distance from correct position, average right tip distance from correct position, 

average left slope distance from correct orientation, average right slope distance from 

correct orientation, average path length traveled by left tool, and average path length 

traveled by right tool.  

This application’s user interface easily allows students to select any videos which 

they wish to rehearse, perform surgeries using those videos, and view immediate 

feedback on recent progress as well as information about their progress over time.  

 

4. DISCUSSION  

  

The concept of this application represents an individualized improvement in the field 

of robotic surgery simulation. Since experienced surgeons have very different motion 

patterns than novices, much training on the da Vinci machine focuses on encouraging 

novice surgeons to acquire the motion habits of the expert surgeons, such as efficient 

movements and a lack of dithering. To that end, medical students often watch videos of 

experts performing robotic surgery. This approach combines that experience with more 

hands-on practice at the da Vinci, allowing students not only to practice a procedure, but 

to practice a procedure as an expert would perform it. One surgeon, stating his approval 

of the concept of this application, noted that it would especially benefit younger 

surgeons, as they are more likely to have experience in performing laparoscopies rather 

than open surgeries, whose techniques can actually prepare individuals better for using 

the da Vinci. Another surgeon concurred that this application would provide a useful way 

for medical students to practice work on minimally invasive robotic surgery.  

This application utilizes color segmentation in a variety of ways. Color segmentation 

is used to pick out blue and green markers on the student tools. A conversion of the 

image from an RGB (red-green-blue) to HSV (hue-saturation-value) representation 

ensures that the markers can be recognized under a variety of lighting conditions found in 

the body. More challengingly, it is used to pick out entire tools during pre-processing of 

the teacher video, which is not provided with any colored markers beforehand. Its success 

is fairly robust to different da Vinci tools; color sliders are provided so that the user can 

tweak color segmentation in order to recognize the specific tools they are using. In 

addition, the success of color segmentation here depends largely on size. The tools are 

grey, black, or white, shades which are usually not found in the body, making color 

segmentation a good technique for preprocessing the tools. However, false positives may 

be created due to areas of deoxygenated or necrotic tissue in the body, which also appear 

grey; in addition, surgeons often place the two tools very near to or touching one another, 

causing the application to only register one very large contour instead of two separate 

ones. The size constraints for the tool contours typically prevent such small areas of 

tissue from being recognized as tools, and during preprocessing, the contours found were 

filtered by width to determine if they represented one tool or two tools touchcing one 

another. These difficulties were thus manageable during preprocessing, but they caused 

color segmentation to only be used for the teacher video in preprocessing, not the 

program's runtime stage. 

Kernelized correlation filter was used for tracking the teacher's tools during runtime. 

It was chosen out of a variety of trackers built into OpenCV. The KCF Tracker has 

several advantages over other tracking algorithms offered by OpenCV, such as Multiple 
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Instance Learning (MIL Tracker), BOOST (BOOST Tracker), Median Flow (MF 

Tracker), TLD (Tracker Learner Detector), meanshift, and camshift. In a comparison of 

these trackers’ ability to track da Vinci tools in video, the KCF Tracker worked best on 

both large and small regions of interest. The KCF Tracker also was often able to find a 

tool again after it temporarily left the frame. As expert surgeons often operate with their 

camera zoomed very far in, this ability of the tracker makes it uniquely suited for 

computer vision in surgical video: da Vinci tools often leave the screen and come back. 

The KCF Tracker is able to handle this case without either swelling up to encompass the 

whole screen, like camshift, being unable to handle the camera zooming in or out and 

drastically changing tool size, like meanshift, or becoming “stuck” on non-tool objects 

when small areas are selected, like the other tracking algorithms.  

The StereoBM algorithm offered by OpenCV was not perfect at calculating the 

disparity. When the disparity map was converted to a depth map from (x, y) pixel 

coordinates to (x, y, z) coordinates in millimeters, the depths of the tools in certain 

images yielded approximately accurate responses. However, the disparity map itself was 

quite noisy, and required a large "minimum disparity" value to produce reasonable 

values, which severely limited the scope of the image. The OpenCV StereoSGBM, or 

Semi Global Block Matching, was tried as well and did not produce better results. 

According to one study, the da Vinci S endoscope has a divergent optical axis as well as 

“fisheye” radial distortion which makes the disparity between two pixels a function of not 

only z-position in the world frame (depth) but also x- and y-position as well. Using points 

at known depths, this study manually calculated the disparity as a function of x, y, and z 

location, and used that to calculate a more accurate depth; this technique may be tried in 

future [26]. Obviously, this would not be practical for garnering live operation video. 

However, future work will focus on improving the depth map's accuracy so that the 

Kalman filter can receive less noise to filter out of the data. 

 

5. CONCLUSION 

 

In conclusion, this project presents the first stage of an interactive augmented-reality 

da Vinci training simulator. It offers the marked advantage over other existing simulators 

of using real video filmed by an expert while operating on the da Vinci itself. The 

preprocessing algorithm, runtime algorithm and user interface supporting this product 

have been developed to successfully locate tools within video of previous da Vinci 

surgeries. Once successfully connected to the da Vinci surgical system via hardware, this 

system will be able to provide a cheap and easy way for medical students who have 

already honed basic skills on the da Vinci to practice a variety of more elaborate 

surgeries.  

 

6. RECOMMENDATIONS 

 

 Future work for this project remains to be done in several areas.  

 First, although it is possible to stream in video from the da Vinci endoscope, it is 

currently only possible to do so from one eyepiece. Several S-video to USB converters 

used for the purpose of extracting video from the da Vinci have proven incompatible with 

the current Linux distribution and drivers. Future work includes creating and applying a 



17 

patch to make the converters functional so that video can be streamed in from both eyes 

of the da Vinci. This will allow for the creation of more testing video as well as the 

finalization of the complete application itself.  

 Second, the correct outputting of video streams to the da Vinci eyepiece at the 

surgeon’s console has yet to be accomplished. Although newer da Vinci systems have a 

plug-and-play TilePro system which allows video to be easily streamed into the da Vinci, 

the first generation da Vinci machine lacks this functionality. Accordingly, streaming of 

video to the da Vinci machine has not yet been accomplished.  

 Different generations of da Vinci machines –first generation, the S, the Si, and the Xi 

– all have slightly different cameras. Accordingly, this program can only use video from 

the da Vinci machine on which it was calibrated – calibration which is required for the 

creation of the depth map calculates the rotation and translation matrices between the two 

cameras of the endoscope. These matrices differ from camera to camera, however. Since 

the first generation da Vinci is no longer used in surgery, a next step in this project would 

be to gain access to, calibrate the application on, and test students on a more modern da 

Vinci model. In that way, actual surgery videos could be compared to the user’s 

movements.   

 After the completion of these first two tasks, pilot testing, and then a proper user 

study, can be performed on this application, so that the third task – bringing the 

application to be used on a more modern da Vinci machine – can be achieved.   
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